Nguồn gốc Kính_thiên_văn_Chân_trời_sự_kiện

Thuyết tương đối rộng tiên đoán sự tồn tại của lỗ đen, và các nhà thiên văn đã quan sát thấy dấu hiệu cho sự tồn tại của những thiên thể đậm đặc khối lượng lớn trong vũ trụ, tuy vậy vẫn chưa chắc chắn chúng là những lỗ đen. Hơn nữa, mặc dù về mặt lý thuyết các hố đen đã được cộng đồng khoa học và công chúng chấp nhận rộng rãi, bản chất và cơ chế tạo nên nhiều hiện tượng liên quan tới hố đen vẫn còn cần phải được làm sáng tỏ. Dự án kính thiên văn chân trời sự kiện bắt đầu trong bối cảnh này. Không giống như những phương pháp khác nghiên cứu lỗ đen, như quan sát trực tiếp sóng hấp dẫn và phân tích chuyển động của các sao quay trên quỹ đạo quanh chúng, mục đích của EHT là chụp được trực tiếp hình ảnh phóng to của vùng chân trời sự kiện.[7]

Kiểm chứng thuyết tương đối tổng quát

Thuyết tương đối rộng đã dự đoán thành công nhiều hiện tượng vượt ngoài phạm vi của cơ học cổ điển Newton, và nó đã vượt qua nhiều cuộc kiểm chứng thực hiện trên Trái Đất và trong phạm vi trường hấp dẫn yếu như ở hệ Mặt Trời. Tuy nhiên, để đánh giá thuyết tương đối rộng có phải là lý thuyết đúng miêu tả trường hấp dẫn gần với thực tế nhất, các nhà khoa học vẫn cần phải thực hiện kiểm tra các hệ quả của nó trong trường hấp dẫn mạnh. Ngay cả khi khối lượng của một lỗ đen được tính toán từ thông số quỹ đạo của các ngôi sao nằm rất gần với lỗ đen, thì mức độ ảnh hưởng tới các ngôi sao này vẫn thuộc trường hấp dẫn yếu. Công nghệ VLBI ở tần số cao được áp dụng để mở rộng phạm vi quan sát tới vùng nằm gần biên của một lỗ đen siêu khối lượng, cho phép thăm dò cấu trúc của chân trời sự kiện, do đó có thể thực hiện kiểm chứng thuyết tương đối tổng quát trong vùng trường hấp dẫn mạnh.[5]:35[8]

Chân trời sự kiện

Minh họa lỗ đen: Vật chất quay quanh lỗ đen tạo thành đĩa bồi tụ với luồng tia phóng ra ở cực. Ở bức ảnh này không xét đến hiệu ứng thấu kính hấp dẫn gây bởi chính lỗ đen này.

Sự xuất hiện hoặc không tồn tại chân trời sự kiện là một trong những chủ đề chính mà dự án EHT muốn khám phá.[8] Về mặt lý thuyết, chân trời sự kiện là một biên giới ảo trong không thời gian (miêu tả bởi các nghiệm hay gặp nhất là nghiệm Schwarzschild hoặc nghiệm Kerr của phương trình trường Einstein) xung quanh một lỗ đen. Từ biên giới này, không một vật gì có thể thoát ra được, kể cả ánh sáng. Đối với một lỗ đen không quay, bán kính của chân trời sự kiện, gọi là bán kính Schwarzschild RS bằng 2GM/c2 với G là hằng số hấp dẫn, M là khối lượng của lỗ đen và c là tốc độ ánh sáng.[9]

Tại biên giới này cũng nổi lên những đặc điểm mâu thuẫn giữa cơ học lượng tử và thuyết tương đối rộng. Tính chất nghịch đảo thời gian (time reversibility) là một đặc điểm cơ bản của cơ học lượng tử miêu tả các hệ vật lý; mỗi quá trình lượng tử có một quá trình nghịch với nó, mà về mặt nguyên lý có thể sử dụng để khôi phục bất kỳ thông tin nào ở thời điểm gốc ban đầu. Ngược lại, thuyết tương đối tổng quát—lý thuyết giải thích hấp dẫn là biểu hiện của độ cong không thời gian và dự đoán sự tồn tại của lỗ đen—cho rằng không tồn tại quá trình nghịch khi có thể đưa thứ gì đó trước đấy rơi vào lỗ đen quay ra trở lại bên ngoài chân trời sự kiện. Có nghĩa rằng thông tin mang bởi các hạt rơi vào trong lỗ đen sẽ bị mất mãi mãi. Mâu thuẫn trên chính là nghịch lý thông tin lỗ đen.[5]:35 Nếu trong trường hợp Sgr A* có một bề mặt vật lý mà không tồn tại chân trời sự kiện, thì mọi năng lượng và vật chất rơi vào sẽ làm nóng bề mặt này, và từ bề mặt này sẽ phát ra phổ bức xạ vật đen có đỉnh nhọn ở bước sóng hồng ngoại gần. Thực tế đã không quan sát thấy phổ bức xạ này. Bằng cách quan sát trực tiếp cấu trúc của vùng bức xạ quanh lỗ đen sẽ làm sáng tỏ thêm nghịch lý thông tin lỗ đen.[8]

Đĩa bồi tụ

Các lỗ đen lớn dần bằng quá trình hút vật chất như khí và bụi về phía chúng. Gần lỗ đen, lực hấp dẫn mạnh nén vật chất ở đĩa bồi tụ rơi vào trong thể tích càng nhỏ hơn. Quá trình này làm cho vật chất đạt tới nhiệt độ hàng tỷ độ, tạo ra nhiệt hiệu quả cao hơn 20 lần so với phản ứng tổng hợp hạt nhân, và trở thành nguồn phát năng lượng hiệu quả tiếp theo mà con người biết đến. Bức xạ từ khí nóng cuộn xoáy về lỗ đen làm cho môi trường quanh lỗ đen trở thành những đối tượng sáng nhất trong vũ trụ. Các nhà thiên văn vật lý có thể mô hình hóa vật chất bồi tụ cùng thêm một số tính chất mở rộng, nhưng họ vẫn chưa rõ làm thế nào mà dòng vật chất ở đĩa bồi tụ từ một quỹ đạo có bán kính lớn về phạm vi nằm gần chân trời sự kiện, và chính xác bằng cách nào mà cuối cùng chúng rơi vào lỗ đen. Từ trường tạo bởi các hạt mang điện chuyển động trong đĩa bồi tụ có thể đóng vai trò quan trọng đối với hành xử của đĩa. Mặc dù thế các nhà thiên văn vật lý vẫn biết rất ít về cấu trúc của trường này và làm thế nào mà cấu trúc của nó ảnh hưởng tới các đặc điểm quan sát được ở đĩa bồi tụ bao quanh hố đen.[5]:35-41

Tia phóng ra từ lỗ đen

Thêm một đặc điểm gây lúng túng cho các nhà thiên văn vật lý đó là họ vẫn chưa hiểu nguồn gốc của các tia phóng ra từ lỗ đen— hiện tượng trong đó các lực gần một lỗ đen siêu khối lượng bằng cách nào đó kết hợp lại đẩy vật chất phun ra ngoài với tốc độ siêu tương đối tính (lên tới 99,98 phần trăm tốc độ ánh sáng). Những tia này vươn xa đến những khoảng cách lớn, có thể kéo dài vài nghìn,[10] hàng trăm nghìn[11] hoặc vài triệu parsec.[12] Các tia tương đối tính xuất phát từ phạm vi gần lỗ đen như là những chùm tia có độ chuẩn trực cao mà có thể xâu qua hệ Mặt Trời—ví như xâu chỉ qua lỗ kim thiên hà. Các nhà thiên văn vật lý không biết cơ chế nào có thể gia tốc những tia này lên tới vận tốc lớn như vậy hay thậm chí thành phần của những tia này bằng gì—có phải chúng chứa electronproton hay electron và positron, hay về cơ bản chúng chỉ là điện từ trường mạnh? Để trả lời những câu hỏi trên và những câu hỏi liên quan, các nhà thiên văn cần quan sát trực tiếp khí và bụi trong môi trường quanh lỗ đen.[5]:36[13][14]

Tài liệu tham khảo

WikiPedia: Kính_thiên_văn_Chân_trời_sự_kiện http://www.perimeterinstitute.ca/conferences/eht-2... http://www.bbc.com/news/science-environment-352583... http://www.bbc.com/news/science-environment-389371... http://www.computerworld.com/article/2972251/space... http://blogs.futura-sciences.com/e-luminet/2015/01... http://www.natgeomedia.com/news/ngnews/56310 http://news.nationalgeographic.com/2017/04/black-h... http://blogs.nature.com/aviewfromthebridge/2017/03... http://www.nytimes.com/video/Science/1000000037251... http://w.astro.berkeley.edu/~wright/vlbi/CARMA_EHT...